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This follows certain standard mathematical
porocedure from the theory of probability.



Question

Mean of A electrons come to the electroluminescence region
Each electron generates a photons.
What is the mean number of photons ?

What is the variance on the number of photons ?

A electrons per unit time

>

a photons per electron

Other questions are similar. If mean of A photons convert in a photo-sensor
with a mean gain of a electrons per photon what is the distribution of the
output number of electrons.

Basically, an average of A packets arrive each with an average of « items
in each packet. What is the mean and variance of the total number of
items ?



Distribution of incoming electrons with Poisson mean of A

K 1s the number of electrons, a discrete random variable with probability mass function

Ak
PK(k) = ﬁe

Generating function for this is (think of s* as a tag for the value of the probability)
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G, is also expressed as the expectation value for s*
G (s)=E[s']

Probability 1s a sequence of numbers and G (s) allows us to organize this sequence

in a compact manner. The series always converges for |s| <1.

Similarly, the distribution of photons from each electron has probability

l
P, (4 )=% e “ and a similar generating function G, (s).

We have labeled the two generating functions to distinguish them from each other.

Additionally recall that the mean for a Poisson distribution with parameter A is
E[k]= A and the variance is also E[k*]— (E[k])* = A



Probability for total photon count

Total number of photons 1s a discrete random number Z.

K
Z=> 1,
i=1

This 1s a sum of K random numbers, each 1s the photon count from an electron.

Now, it is obvious that the mean number of total photons must be A X &, where

A is the Poisson mean for the number of electrons and « is the Poisson mean for

the number of photons emitted by each electron.

However, the random number for the total number of photons is not a product of

the two random numbers K (the number of electrons) and L (the number of photons).
What we are trying to calculate 1s the generating function for the total number of photons

and consequently the probability mass function for the total number of photons.

G,(s)=E[s]= iszPZ(Z =2)

Here P, is unknown. We need to calculate the mean and variance of P, .



Expectation values

Start with the generating function for total number of photons

(recall that K 1s the r.v. for electrons and L 1s the r.v. for photons/electron)

K

o o Y,
G,(5)=) s°P,(Z=2)=E[s°]1= ) E[s~ |K=k]ePc(k)

= z:E[SLlsL2 L.SK |K =k]e P (k)
k=0

This says that the total expectation for s is the same as

the average of the conditional expectation for k electrons (averaged over the
probability of obtaining k electrons). This 1s the law of total expectation.
Imagine that outcomes {a,b,c} have probability {0.1,0.2,0.7}, respectively.
For each outcome we get an average of {5,7, 10} dollars.

Then the expectation for the total amount of money is
5x%0.1+47x0.2+10x0.7=8.9

The dollar value for each outcome could also have a distribution, but

we are averaging over it to get the total expectation.



Conditional expectation

And so we have to first calculate the conditional expectation

(o o]

E[s"s“.s"|K=kl= ), s"s".s"“P.({)P,(L,)..P(L,)

since all P, are identical Poisson, the sums are identical, and therefore

- k
E[s"s™ . s | K =k] ={Z SKPL(K)} = (GL(S))k

E[SLISLz ...SLK K = k] :(ea(s—l))k
To be clear, this is the generating function for the number of photons under the

condition that exactly k electrons emitted photons in the electroluminescent region.

Or that we have exactly k packets each with a random number of items {/¢,,¢,,....¢, }.

The sum of this array of packets has the probability encoded in the above generating function

Now we have to calculate the average of this expectation over the number of incoming

electrons.



Total expectation

Now we calculate the expectation of this conditional expectation.

E[s°]1= Y (™) x Po(k) =3 () X P (k) =™/ ™ = M D
k=0 k=0

Notice that this could be succinctly restated as

G,(s)=G(G,(s)) .... 1f this1s confusing notice that the argument for G, 1s G,
And so we have the generating function

G,(s)=e"

We can now use this to obtain the mean, variance, and the probability mass function for

e(l(s—l)_l)

the total number of photons. Notice that the function is not symmetric in A and «.
One would incorrectly think that it should be if we naively think of the total number of photons as a
random variable that is a product of two independent random variables.

It 1s easy to obtain the mean and variance using these formulas.
dG,(s)

Elz]= J = e g et =Ada asexpected.
S s=1 .
2 _
Var[z]=E[z’]-(E[z])’ = (d Gz(i =) +E[zD—-(E[z])" ... gets a little tricky here.
)

Each derivative of G, pulls down z, (z-1), etc. Recall that G,(s)= E[s"].
Var[z]= Aac-e* D (o + Ao eV + da— A’

Var[z]= Ao(ox +1)

a(s-1)



Probability mass function

Notice that the variance is in fact not symmetric in A and ¢ and it is always larger than
the variance expected from a Poisson probability mass function with a mean of aA.
Var[z]= Aa(o+1)

It 1s best to understand this using the full probability mass function which we will now

calculate. We have to invert G,(s) = Z s°P,(z) to obtain P, where z 20 is an integer.

z=0

It is easiest to do this using Fourier series with the substitution s — e

@Z(S) — Gz(eiS) — eﬂ,(e
This 1s called the characteristic function. There 1s a formal mathematical relationship here

Ol(els—l)_l)

which we will not explain. Most importantly, the characteristic function of a probability mass

function always exists and 1s finite. Now the inverse 1s easily written down as this

1 f -5z
PZ(Z)=E_L(PZ(S)'€ ds

Notice that z 1s an integer and ¢, is an infinite series with each probability tagged by a

positive integer power of €” .

Over the inteval [-7,7], any term that does not have the same power as z will get zeroed out.
This is just like a Fourier series. The integral can be calculated numerically for specific values of

A and o and z. The full form is here.

1 % o (-1 _ i . .
(z)z—J‘e’W Ve ds where z >0 is an integer

—-7T
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The above could be generalized to some arbitrary discrete or continuous response

function. This response function is called the "jump" (J) distribution.

The resulting distribution is called a sputtering-Poisson (SP) distribution (and other names)

And so if a mean number of A particles convert in a detector with some response

distribution such as the Gaussian, Exponential, or Landau distribution how can we calculate the

mean and variance ?

Charac. func. ®,(t)

Gaussian 1 o~ 207 eit,u . e—azﬂ/z
2rc
1
Exponential 1 e (1 it )
o o
. | ct|(1+2L0g|t| )
Landau L(u,c) ezt,u oo T



For a sputtering Poisson with Gaussian as jump. We will call the random number X

l|:eit,u'e—0'2t2/2_1:|

O ()=e- 1. The PDF can be obtained by an inverse Fourier transform.

<xSG> = —i%(t =0)=u-A ... as expected.

(w6 = (i) %G(r—m (O +(A+ Dt

Var(x) = <xSG> — <xSG> = Ao’ + 1) .... you are welcome to do the algebra.

Assume that there are A=5 Hz of muons in a detector. And each muon produces a
charge pulse that 1s Gaussian distributed with (1 £0)(2.00 £0.02) fc each.

Then the mean value of the charge each second is Au=10 fc

The variance on the charge will be A(c” + u*) = Au” = 500 fc*

Notice that for small o, the ratio

Var(x) Mo®+u’)
<xSG> ouA

Thus only from the mean and the variance of a current one could determine the mean

=l ... Obviously thisis only if A >0 and > o

response of a detector.



For a sputtering Poisson with Exponential as jump. We will call the random number X,

1 it./oz
Q.. (t)=e [1‘”/ “} ..... The PDF can be obtained by an inverse Fourier transform.

<xSE> =—i AP (t=0)= A as expected.
dt o

(33, ) = =iy "’SE(r 0=+ 1)

2
Var(xg.) = <xSE> <xSE>2 = —)2’ ... Don't think I have screwed up the algebra

(04

Again there are A=5 per day of rain showers. And each showers produces a

= 5 inches of rain with an exponential distribution.

Then the mean value of rain per day is A /a=25 inches

The variance on the rain will be 24/ o® =250 inch’ = (16inch)’...quite large

The final distribution 1s not so simple. It can have many zeros, and has a rise
and fall.



PDF

For a sputtering Poisson with Landau as jump. We will call the random number X,

21
{eiwe—ct(H;Logt)_l]

o,t)=e- - .. It is possible to simulate this.

The mean and variance are undefined. It is one of those crazy distributions.
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We will work on various quantities regarding this
distribution in subseguent work



Main distribution P.(k) = —e
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